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Abstract 
On the basis of some mathematical and physical 
characteristics of anomalous dispersion experiments, 
it has been possible to derive simple rules, R . . . .  ~, 
Rano,2 and Rano,3, that permit the selection of triplet 
phase invariants, in a single-wavelength experiment, 
that have values close to zr/2, -z r /2 ,  0 and other 
values in the range from -Tr to zr. The rules, Ra,o,t, 
Rano,2 and Rano,3, apply to the case of a single type 
of predominant anomalous scatterer. The simple gen- 
eralization to more than one type of predominant 
anomalous scatterer is also described. Test examples 
show that large numbers of invariants may be evalu- 
ated by these means with reliabilities that are poten- 
tially high, but depend, of course, on the reliability 
of the experimental data. The only information 
required besides the measurements of the diffraction 
intensities is the chemical composition of the 
anomalously scattering atoms. In some cases, even 
this information is not required if two alternative sets 
of estimates of the values of the triplet phase 
invariants are considered. 

Introduction 
Anamalous dispersion experiments afford the oppor- 
tunity to evaluate triplet phase invariants in single- 
wavelength experiments. Formulas for accomplishing 
this have already been described by Heinerman, 
Krabbendam, Kroon & Spek (1978) and by Hauptman 
(1982). The formulas of Heinerman et al. (1978) were 
derived from probabilistic arguments and give the 
sines of the invariants. The twofold ambiguity inher- 
ent in the sine of an invariant requires auxiliary 
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information for its resolution. The condition used in 
test calculations was to select the value closest to 
zero. The formulas of Hauptman (1982) were derived 
from use of the conditional joint probability distribu- 
tion and can yield unique estimates for the invariants 
in the whole interval -z r  to +Tr. The method of 
derivation and type of result to be described in this 
article are quite different from those in the previous 
studies. They are based on an analysis of some par- 
ticular mathematical and physical characteristics of 
the data from anomalous dispersion experiments, in 
a fashion that is quite comparable to an analysis 
recently carried out for isomorphous replacement 
experiments (Karle, 1983). 

The characteristics of interest concern observations 
related to the differences of the magnitudes of selected 
types of structure factors and also the expected values 
of triplet phase invariants associated with the struc- 
ture of the anomalous scatterers. The only informa- 
tion required of the predominant anomalous scat- 
terers in this approach is their chemical nature. It is 
not necessary to know the number of positions 
.occupied or the occupancy. The results to be obtained 
here are simple rules, based on several types of struc- 
ture-factor magnitudes, for selecting triplet phase 
invariants whose values are near some particular 
values. 

Test examples performed by Heinerman et al. 
(1978) and Hauptman (1982) show that their formulas 
have the potential for reliable results. Similarly, it 
will be seen from the results of test calculations in 
this article that the rules to be developed here also 
have the potential for yielding reliable evaluations of 
very large numbers of triplet phase invariants. 

O 1984 International Union of Crystallography 
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Conceptual basis 

The concepts that form the basis for the rules of 
interest are illustrated in Fig. 1. The symbolism rep- 
resents three different cases, as shown in Table 1. The 
quantity F;~h is the structure factor associated with a 
measured intensity and includes the contribution 
from anomalous dispersion, F~, is the corresponding 
structure factor when the contribution of anomalous 
dispersion is omitted and F~h is the corresponding 
structure factor that represents only the contribution 
from anomalous dispersion. The quantities are related 
by 

Fah = F~, + F~h. (1) 

It follows from (1) that for all the cases in Table 1 

m ~ ,  ,h = m~-~2,h q- m~3,h.  (2 )  

The atomic scattering factor for the pth atom that 
scatters anomalously is given by 

fp, h =fp, h +f'p + i f  p, (3) 

where f~,h is the normal atomic scattering factor and 
f~, and fp are the real and imaginary parts of the 
anomalous correction, respectively. The quantity ~ in 
Table 1, representing the instance when there is one 
type of predominant anomalous scatterer, is defined 
a s  

= tan- '  ( f f / f ' ) .  (4) 

The solid lines forming the closed triangle in Fig. 
l represent the vector equation (2) with the pre- 
subscript m omitted. Given, for example, the vector 
~,,h as in Fig. 1, the dotted line of radius l~2.h] could 
be a possible location for ~2,h, but not necessarily. It 
would not be possible if the dotted line connecting 
this vector with ~-t,h would have to have a magnitude 

Im 

Iqe 

Fig. 1. An illustration of  the vector  equation,  5~,h = ~2,h + ff3,h- 
The largest magni tude differences, I[~t h i -  15;2 hh, are associated 
with the largest possible  values of  ]~'°z3,h[. This case is represented 
by the triangle formed from the solid lines. The placement  of  
the dot ted  line representing an alternative posi t ion for ~2,h would  
not be possible if the magni tude of  the dot ted lines connect ing 
it to ~:~,h would  exceed the maximum possible value. This implies 
that, for the largest magni tude differences, the phase angles for 
~',.h and ~2.h do not differ by much. 

Table 1. Quantities involved in the three cases leading 
to rules for selecting triplet phase invariants and the 

nature of  the estimates for each case 

• The quantit ies ,,~=~.h, mS~Z,h, and m,~;3,h are defined by the corre- 
sponding entries in columns 2, 3, 4, respectively, for m = 1,2, 3. 
The estimates are appropr ia te  when one kind of  p redominant  
anomalous  scatterer is present.  More  complex circumstances are 
discussed in the text. 

Case, 
m ,,,~:l ,h mJg2.h m ~ ; 3 , h  Estimates 
1 FAh F*a ? F : ,  -F:~- t lr/2 or -7r/2 
2 F,h + F*s 2F~, F:h + F:~- 0 or ~" 
3 F,~ F~, F% 38 or 38 + 7r 

t" The asterisk denotes complex conjugate. 
~: 8 is defined in (4). 

that exceeds the maximum possible value for [~3,hl- 
The implication of this observation is that if the largest 
differences ]] ~, .h]-  I  2,hfl are selected from a data set, 
they would be associated with the largest possible 
values of l~3.hl and ~:,.h and ~:2,h would have phases 
that do not differ greatly. We formalize these observa- 
tions and their implications, as follows: 

1. The largest-magnitude differences, ]]~:,,h[-- 
]~2,h]], are associated with the largest values of the 
magnitudes ] ~;3,h[" 

2. Triplet phase invariants associated with the 
largest l~3.~3.k:~3.(K+~)l can be expected to have 
values close to zero, especially for simple heavy-atom 
structures. [The triplet phase invariants refer to the 

n rl nonanomalous portion of the scattering, (q~j,h + q~,k + 
rl 

~oj,(~+~)), additional phase functions arise from the 
anomalous portion of the scattering and can be 
readily evaluated from appropriate tables.] 

3. For the larger values o~11~,.~1- I~=.~11, the phase 
of ~,,h will differ little in value from the phase of ~:2.h. 

Theory 

Derivation of  Rano,  ' 

We are concerned here with case 1 of Table 1. The 
rl n *  appropriate equation from (1), since Fh = F-h, is 

F~h-- F*~ = F,~h -- F~3. (5) 

We form the products 

(F;~h F*K)(F~k * * - F , ~ r , ) ( F , ~ + r , )  ) _ _ FA(h+k) 

( F x h  a* a a* a a* _ a _ F ~ K ) ( F a k  F:~k) (F~6 ,+k  ) -  - - Fa(h+k) ) (6) 

and consider first the interpretation of the right side 
of (6). We have 

N a n o m  

"F~h = Y. f:j,h exp (iSxj.h) exp (2rrih. rj), (7) 
j = l  

where Na.om is the number of anomalously scattering 
atoms in the unit cell, 

f~j,h ,2 _,_ ¢,2 ),/2 a = (f~j,h (8) - - d  Aj, h 
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A denotes variation with wavelength, h denotes vari- 
ation with reciprocal vector, although f '  and f"  are 
usually treated as independent of scattering angle, 
and 3 is defined by (4). Equation (7) can be rewritten 
in terms of the number of types of anomalous scat- 
terers, q (the subscript 1 is reserved for atoms that 
essentially do not scatter anomalously): 

q + l  

F~h= ~. (f~/f~h)exp(i~aj)F~h, (9) 
j = 2  

where f~,n is the normal atomic scattering factor, f~j 
and f~(~ are treated as independent of the scattering 
angle and the F~h are the structure factors for each 
type of anomalously scattering atom. We obtain from 
(9) 

q + i  

F ~ h - F ~ = 2 i  ~ (f~/f~"h)sin3a~Fj"h. (10) 
j = 2  

The product on the right side of (6) can now be given 
in terms of the product of three sums obtainable from 
the right side of (10). As an approximation, the neglect 
of cross terms in the latter product gives 

q + l  

-8 i  ~ [(f~} )/f~hf~k.fjj,(fi+~)] s in3 6,V 
j = 2  

x IF~hF~kF~,(~+~)] exp [i(~0],h + q~,k + q~,(~+~))], (1 1) 

where it is expected that, for large values of 
IF~,~F~F;.~+~d, the triplet phase invariants (g'7,h + 
~0~k + ~0~"~+~)) will have a value close to zero• Although 
(11) affords the opportunity to analyze the case of 
several types of anomalous scatterers, as a practical 
matter there is usually one type of predominant 
anomalous scatterer. We proceed with this assump- 
tion and achieve some simplification• 

With one type of predominant anomalous scatterer, 
we may replace (11) and avoid the need to make any 
approximation, with 

• a3 
-8l[(fa2/f~,hJ~,kf~,(fi+fi)) sin 3 8~2 

X IF~,hF2"kF~,ff,+r,)l exp [ i(q~,  h a t- ~ , k  -F ~;,(fi+~))], 
(12) 

noting that f~2 sin 6a2 =f]2.  The left side of (6) may 
be written 

I FahG, k Fa(~ +~)l exp [ i(~o h "~" ~k .at- ~h +k)] 

G h G k  G(h+k) I exp [ i(q~h + ~ k -  ~ g h + k ) ]  

FA hFA ~ FA(~+~) I e x p  [ i(¢Ph -- ~ + q:'ii +~)] 

GhFx;FX(h+k)l exp 

F.~KF~ kF~(K+;)] exp 

Fx~FxkF,~(h+k)l exp 

FxaG;G(a+~)Iexp 
FA ~ FA ~.FA (h +k) [ exp 

[ i(¢Ph -- ~p~- ~0h+k) ] 

[ i(-- ¢pK + ~Pk + ¢PK+~)] 

[ i ( - - @ ~  -F @k --  ~ h + k ) ]  

[ i ( -  ¢PK - ~ k  - ~l~h+k)]• (13) 

On the basis of observation 3 above, when the 

appropriate magnitude differences are large, the trip- 
let phase invariants in (13) may be replaced by some 
average value (~ @h.k) and then (13) may be rewritten 

(I hi- I K I)(I d -  I I)(I +,,>1 
- I  F,,,h+,,)l) exp (i(, @hk))• (14) 

We now compare (14) and (12) representing the 
left and right sides of (6), respectively• On the basis 
of observations 1 and 2 above, the triplet phase 
invariant in (12) can be expected to have a value close 
to zero so that (12) is essentially a pure imaginary 
number• In order for (12) and (14) to be approximately 
equal, the average of the triplet phase invariants, 
(~ q~hk), should have a value close to rr/2 or - r r /2•  In 
fact, given the sign of the triple product of magnitude 
differences in (14) from experiment and the sign of 
f"  from tables o f f '  and f ' ,  it is possible to determine 
whether (~hk) is close to ~r/2 or to --rr/2. We can 
formulate the following rule for the largest triple 
products of magnitude differences: 

Rano, l: I f  the sign of the product of the largest-magni- 
tude differences, ( I G h l -  IF~l)(IF~d-IF~l)KIG,~+k,I- 
]Fa(h+k)]), is the same as the sign off", the value of the 
average triplet phase invariant is close to -7r /2  and, 
when the signs are opposite, the value is close to I7"/2. 

This rule, in effect, assigns the estimate to all eight 
triplet phase invariants in (13). As a modification of 
Ra,o,~, the estimates may be assigned only to those 
triplet phase invariants that are associated with the 
larger products of structure-factor magnitudes listed 
among the eight possibilities given in (13), instead of 
to all eight of them. Test calculations indicate that 
improved accuracy may be obtained this way. 

If there is more than one type of predominant 
anomalous scatterer, (11) may be used instead of (12) 
and compared with (14). In order to use (11), at least 
the chemical composition of the anomalously scatter- 
ing atoms would have to be known• From it, the f~j 
could be obtained from appropriate tables and the 
values of the IF~hF~kFT.<~+;)I could be evaluated 
approximately• If the anomalously scattering struc- 
ture were known, the exact product on the right side 
of (6) could be computed from the product of three 
sums obtainable from the right side of (10). 

Derivation of  Rano, 2 

We are concerned now with case 2 of Table 1. The 
rl n* appropriate equation from (1), since Fh = F-h, is 

Fah + F~*~ -2F~, = F~h + F~3. (15) 

We form the products 

(F~h + F*~-2F~,)(Fak + F*~,- 2F~, ) 

x (F,~(~+~) + * F;~(h+k) -- 2FK+;) 
a a *  a a *  a a ~" 

=(Fan +Fa~)(Fak +F~d,)(Far,+r,)+Fa(h+k)) (16) 
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and consider first the interpretation of the right side 
of (16). We obtain from (9) 

q+l 
F~h + F ~  = 2 ~., ( f~j / f~h ) COS 6a~F)~h. (17 / 

j=2 

The product on the right side of (16) can now be 
given in terms of the product of tltree sums obtainable 
from the right side of (17). As an approximation, the 
neglect of cross terms in the latter product gives 

q+l 
8 Y  '~  " " " [(f~ )/f?~hf~,kf~,<~+~] COS ~ ' ~ ,  

j=2 

x IF;%F~kF~+r,)l e x p  [i(~ojn, h + ~jn, k + ~jn(~+~))]. (18) 

As in the case of(11), we proceed with the assumption 
that there is one type of predominant anomalous 
scatterer and replace (18) with 

8[(f~z )3/f~,hf~,kf'~,ff,+~,,] cos 3 3~2 

xIF~.hF~,kF2~+r, ) exp [i(q~,h +q~,k +q~,~+;))] (19) 

noting that f~2 cos 6,~2 =f~2. 
The left side of (16) is obtained with the use of the 

notation of Table 1 when m = 2. [Note that (13) is 
equivalent to the case when m = 1.] We obtain in 
general terms 

I~,.h ~,.k ~,.~+~1 
x exp [i(mq~,h + ,,,q~,,k + ,,,qh,~ +;))] 

x exp [ i(.,q~t,h + .,q~,k + ,,,q~2,~+;))] 

-Im~, .h  .,~:2.k -,~;'X~+;)[ 
X exp [i(.,~0,,h +.,~02,k +.,~0~X~+;))] 

x exp [ i(mqgl,h -t" m(~2,k "Jr- m~O2.(~+~))] 

- I.,~Z,h m~l,k m°~l,(K+k)l 
x exp [i(,,,q~2,h + r,,~0 t,k + m~0~.~K+;))] 

X exp [i(r.q~2,h +,.~0t,k + mq~2.~+;))] 

X exp [ i(mq~2, h + m~2,k + mGOL(fi+;))] 

-Im~2.h ~2.~ .~2.~+~>1 
x exp [ i(,,,q~2,h + ,,,~02,k + ,,,~02,~ +~))]. (20) 

When m = 2, 2~t h = FAh + F*~ l, 2~i,h is the phase of 
Fah+F*K, 2o%2,h["" 2lFh and 2~02,h= q~,. In the test 
computations to be described, the IF~h+F*Kl and 
2~01,h were approximated by Fah +lF*sl and (~0ah-- 

~oa~)/2, respectively, with small error. There was, in 
fact, no need to use the approximate form, and in 
one test calculation it was not used. On the basis of 
observation 3 above, when the appropriate magnitude 
differences are large, the triplet phase invariants in 
(20) may be replaced by some average value (2(~)hk) 
and then (20) may be rewritten 

(IGh + F*KI-2 F~, I)~1F~ + F*~ I- 21F7, l) 
×(IF~K+~> * + F~h+k) l-- 21F~,+~I) exp (i(2q~hk)). (21) 

We now compare (21) and (19), representing the 
left and right sides of (16), respectively. On the basis 
of observations 1 and 2 above, the triplet phase 
invariant in (19) can be expected to have a value close 
to zero so that (19) is essentially a real number. In 
order for (19) and (21) to be approximately equal, 
the average of the triplet phase invariants, (2•hk), 
should have a value close to zero or 7r. Given the sign 
of the triple product of magnitude differences in (21) 
from experiment and the sign o f f '  from tables of f"  
and f", it is possible to determine whether (2~hk) is 
close to zero or to zr. We formulate the following rule 
for the largest triple products of magnitude differ- 
ences; 

Rano,2: I f  the sign o f  the product o f  the largest magni- 
tude differences, (IGh+F*KI-2IFgI)(IF, k+F*~I- 
2IF~, I)(G<~+~)) + * Fa(h+k) ]-- 2 FK+t]), is the same as the 
sign of f ' ,  the value o f  the average triplet phase invariant 
is close to zero and, when the signs are opposite, the 
value is close to yr. 

In practice, it may not be readily possible to obtain 
triplet products composed of large-magnitude differ- 
ences that have a sign different from that of f ' ,  so 
that the opportunity to select triplet phase invariants 
having values close to ~r may not arise from use of 
Rano,2. 

The rule Ra,o,2 in effect assigns the estimate to all 
eight triplet phase invariants in (20). As a modification 
of Rano,2, the estimates may be assigned to only those 
triplet phase invariants that are associated with the 
larger products of magnitudes listed among the eight 
possibilities given in (20), instead of to all eight of 
them. 

Similarly to case 1, if there is more than one type 
of predominant anomalous scatterer, (18) may be used 
instead of (19) and compared with (21). In order to 
use (18), at least the chemical composition of the 
anomalously scattering atoms would have to be 
known. From it, the f~v could be obtained from 
appropriate tables and the values of the 
If~,hF],kFT,~K+a,] could be evaluated approximately. If 
the anomalously scattering structure were known, the 
exact product on the right side of (16) could be 
computed from the product of the sums obtainable 
from the right side of (17). 
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Derivation of  Rand, 3 

We are concerned now with case 3 of Table 1. The 
appropriate equation is (1) which we rewrite as 

Fxh-- F~ = F,~ h. (22) 

We form the products 

(FAh -- F~ )(Fak -- F~, )(Fa(K +k)- F~+t) 

= FaXhFaxkFax(h+k) (23) 

and consider first the interpretation of the right side 
of (23) which can be expressed in terms of the product 
of three sums of the type given in (9). As an approxi- 
mation, the neglect of cross terms in the latter product 
gives 

q+l 
E [(f*~ 3 ,, n ,, " ) /f~,hf~kf~.ff,+f,)] exp (i36aj) 

j = 2  

xIF~,hF~,kFT,(K+r,)[ exp[i(~P~.h 7t-~t)jnk "~0jn(~+~))]. (24) 

We proceed with the assumption that there is one 
type of predominant anomalous scatterer and replace 
(24) with 

a 3 n n n 
[(fx2 ) /f~,hf~,kf~,(K+K)] exp (i36a2) 

n n n • n r l  n 
X F2,hF2,kF2.(K+f 0 e x p  [l((~O2, h "3 L (P2.k "t- ~02,(K+~,))]. 

(25) 

The left side of (23) may be obtained from (20) when 
m = 3 in the notation of Table 1. In this case, 3~,h = 
Fxh , 3~01.h is the phase of Fah , 3,.~'2,h = Fg and 3~02,h = 

q~,. On the basis of observation 3 above, when the 
appropriate magnitude differences are large, the trip- 
let phase invariants in (20) may be replaced by some 
average value, (3q~hk) and then (20) may be rewritten 

(IF,~[- IF?, I)(IGk[- IF?, l) 
x(lG,~+;,I- IFg+d) exp (i(3 qShk)). (26) 

We now compare (26) and (25), representing the 
left and right sides of (23), respectively. On the basis 
of observations 1 and 2 above, the triplet phase 
invariant in (25) can be expected to have a value close 
to zero so that (25) is essentially a real positive number 
multiplied by the function exp (i3&,2). In order for 
(25) and (26) to be approximately equal, the average 
of the triplet phase invariants, ( 3 ~ h k ) ,  should have a 
value close to 36 or 36 + 7r, where 6 is defined by (4). 
We formulate the following rule for the largest triple 
products of magnitude differences: 

Rand,3: I f  the sign of  the product of  the largest magni- 
tude differences, ( Gd-lF~,l)(lGk- F~, 1)( G,~+~)I- 
I v?,+d), is positive, the value of  the average triplet phase 
invariant is close to 36 and when the sign is negative, 
the value is close to 36 + 7r. 

The rule Rano, 3 in effect assigns the estimate to all 
eight triplet phase invariants in (20). As a modification 

of Rand,3, the estimates may be assigned to only those 
triplet phase invariants that are associated with the 
larger products of magnitudes listed among the eight 
possibilities given in (20), instead of to all eight of 
them. 

Similarly to cases 1 and 2, if there is more than 
one type of predominant anomalous scatterer, (24) 
may be used instead of (25) and compared with (26). 
In order to use (24), at least the chemical composition 
of the anomalously scattering atoms would have to 
be known. From it, the 6aj could be obtained from 
appropriate tables and the values of the 
IF~.hF~kF~,(f,+f,)l could be evaluated approximately. If 
the anomalously scattering structure were known, the 
exact product on the right side of (23) could be 
computed from the product of the sums obtainable 
from the right side of (9). 

The effect of rescaling the .~ to represent approxi- 
mately structure factors from point atoms on the 
application of Ra.o.~, Rand,2 and Ra.o.3 has not yet 
been investigated. 

Interpretation of the triplet products of  magnitude 
differences 

We investigate 

(Im&,l- I m 2,hl)(I m&,kl- 1  2,1) 
x = T, (27 )  

where m = 1, 2 or 3, as in Table 1. It is assumed that 
the differences are of large magnitude and the contri- 
butions, ,.~3.t, of the anomalously scattering atoms 
are much smaller in magnitude than the contributions 
from the essentially nonanomalously scattering 
atoms, ,,,~2,,. This is ordinarily appropriate with 
macromolecules. 

It follows from (2) that 

x cos (,,,~P2,h -- mq~3.h). (28) 

Since it is assumed that w e  have to 
good approximation 

Im&,l---Im&,l cos (29) 
If the product in (27) is formed from (29), we obtain 
the factor 

COS ( m ~ 2 , h -  m~3,h)  COS ( m ( ~ 2 , k -  m~3,k)  

X COS (mq02.(~+~) -- m~P3.(~+~)) -= P3. (30) 

It has been shown (Karle, 1983) that such a product 
of cosines, when the magnitudes of the differences in 
(27) are large, is given to good approximation by the 
left side of (31) and when this is combined with (27) 
and (29), we obtain 

COS (m~2,h  + m~2.k + m~2,(K +~,) -- m~3.h -- m(~X.k -- m~03,(K+k)) 
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Table 2. Estimates of values of triplet phase invariants from anomalous dispersion of Cr Ka radiation by sulfur 
in quinidine sulfate 

Number of 
independent Number of Case, 

data invafiants m Estimate 
4708 46 1 - w / 2  
4708 54 ! w/2 

824 49 1 - ~ / 2  
824 51 l ~ /2  

4708 100(X8)T 2 0 
4708 100(X8)T§ 2 0 
4708 50 3 -2"52 
4708 49 3 0"62 
3988 54 3 -2"52 
3988 46 3 0"62 
4708 55 3¶ -2"52 
4708 45 3¶ 0"62 
4708 81§ 3 -2"52 
4708 19§ 3 0"62 

* L means errors and averages are based on the value o f the  triplet ohas, 

Actual Average 
average Invariant error 
value selection* (rad) 
- 1.59 L 0.37 

1.60 L 0-35 
- i -51  L 0.68 

1.46 L 0.68 
0.00 A 0.30~t 

-0 .06 A 0.61:~ 
-2-50 L 0.38 

0-65 L 0.27 
-2 .52 L 0.33 

0.60 L 0.28 
-2-57 L 0.36 

0.61 L 0.30 
- I  .95 L 0-64 

1.21 L 0.62 

plet phase invariant associated with the largest product of  structure-factor magnitudes 
and A means that they are based on the average values of  the eight possible invariants formed for a given h, k, h +k. 

? Phases, ~h, for which IFhl < l0 were omitted from the invariants. 
~: Invariants based on writing Fah + F*~ = ([F~h + FAa I) exp [i(~^h-- ~p,~)/2]. 
§ IF~l was estimated from IF~l = 0.5 W(IF~l +lF~l). 
¶ lnvariants composed from differences numbered 301--600 in order of  decreasing magnitude rather than the top 300 differences. 

T 

" "  Im'-~'3,h m ~ 3 , k  (31) 

In the case of one predominant  anomalous scat- 
terer, (31) leads to R . . . .  i, R..o.2 and R . . . .  3 by use of 
(12), (19) and (25), respectively, if it is assumed that 
the cosine function is equal to +I or -1  depending 
upon whether the triplet product T is positive or 
negative. We can obtain, in principle, more informa- 
tion concerning m(~O2,h.÷m~O2,k÷m~2,(K+~) from (31) if 
we are able to evaluate m~'3,h +m~3,k +,~03XK+~) and 
the denominator  of (31). If we know the structure of 
the anomalously scattering atoms, then it is straight- 
forward to obtain this needed information from (9), 
(10) and (17). If we know the chemical nature and 
amounts of the anomalous scatterers but do not know 
their atomic positions, it may be possible to obtain 
the needed information from (11), (18) and (24). In 
addition to setting the triplet phase invariants, ~S(h + 
q~,k +~oT.(G+~), equal to zero in (11), (18) and (24), it 
would be necessary to make an estimate, on some 
basis such as the largest possible values or some 
fraction thereof, of the IF~hF~.kFTff,+f,)l. 

Test calculations 

Model calculations were performed on quinidine sul- 
fate, (C20H25N202)2SOa.2H20, (Karle & Karle, 1981) 
which crystallizes in space group P21. In the test 
calculations, the source of  anomalous dispersion was 
considered to be solely the sulfur atom with Cr Ka 
radiation, a relative amount  of anomalous scattering 
power comparable to that of heavy atoms in 
macromolecules. Products of  magnitude differences, 
as appear in (14), (21) and (26), were generally com- 
posed from the 300 largest-magnitude differences and 

ordered with the largest product first. Hundreds of 
triplet phase invariants were estimated to be +7r/2 
or - 7 r / 2  by use of  Ra.o.I, 0 by use of  Rano.2 and 33 
or 3 6 + zr by use of  Rano,3, as shown in Table 2. The 
factor (×8) implies that all eight triplet phase 
invariants, as appear, for example, on the right side 
of (20) when m = 2, are evaluated by the estimates. 
This is also indicated by the letter A which implies 
that the average values of  the sets of eight invariants 
are used to estimate the average errors. 

The first four rows of  Table 2 indicate that a major 
decrease in the number of  data used in the calcula- 
tions is accompanied by a modest increase in the 
average error. Table 2 also shows that the use of 

IF , I=o's W(IF,<hI +IF r, ), (32) 
where 

I Nn°n '2 N n °  11 / 2 

SE,= f~h + E (fj'n) 2 
j = l  

W = / N n ° n  2 Nan° , (33) 

instead of  a precisely known value for iF~,l effects a 
modest increase in the average error. Rows 11 and 
12 of Table 2 show that there is a much larger number 
of  invariants amenable to accurate evaluation than is 
displayed in the Table. The calculation in the fifth 
row of  Table 2 was repeated with the function 
Fah + F*KI - 2 F~, [ instead of the approximation to it, 
namely, IF hl +lF  l- 21Fgl with essentially indistin- 
guishable results. The actual average value for 100 
invariants was -0.01 rad instead of 0.00 and the 
average error was 0-29 rad instead of 0.30. 

A calculation was made for the case of m = 3 to 
explore the use of  a formula such as (24) in estimating 
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Table 3. Estimates of  values of  triplet phase invariants from anomalous dispersion of  Cu Kot radiation by Pt, 
Fe, C1 and S in cytochrome c550.PtC142- 

A c t u a l  A v e r a g e *  

R e s o l u t i o n  N u m b e r  o f  C a s e ,  a v e r a g e  e r r o r  
o f  d a t a  (/~) i n v a r i a n t s  m E s t i m a t e  v a l u e  ( r ad )  

2-5 246 1 - w / 2  - 1-.55 0.64 
2.5 254 l ~r/2 1"58 0"69 
5"0 262 1 - w/2 - I "61 0.77 
5.0 238 1 ~' /2 I "59 0.77 
2"5 71 25-~: ~" 3"03 0.46 
2-5 343 25" 0 -0"03 0.51 
2-5 240 2 0 0"10 1-18 
2-5 163 35" 0"26 -0 -29  0.74 
2"5 190 3t  -2"88 -3"25 0-69 
2"5 160 3 0"26 - I" 13 ! "48 
2-5 242 3 -2 -88  -3"84 1"07 

* All calculations of error are based on the known average value of eight invariants,  as occur in (20), for cases m = 1, 2, 3. 
t All IF~ I required for cases m = 2 and  3 were computed  from (32). In these part icular  calculations,  the IF~, I were computed  from data obta ined from 

Mo Ka radiat ion rather than Cu Ka. 
, For m =2, IF~ + F~%I has been replaced by IF~I +IF~I. 

triplet invariants when there is more than one pre- 
dominant anomalous scatterer. The value of 38 for 
one of the scatterers was -2.52 rad and for the other 
it was -0.81 rad. The weighted contribution from use 
of (24) put the expected value for the triplets at 
-1.09 rad for positive triple products and at 2-05 rad 
for negative products. To make the calculation, it was 
assumed that (FiSh I rn ..~12~ /Sjhnj ), where nj is the number 
of atoms of type j, is approximately the same for all 
j. Expected values computed from known values for 
the coordinates of the anomalously scattering atoms 
by use of (9) were -1-14 for positive triplet products 
and 2.00 for negative ones. For comparison, the actual 
average values of the triplet phase invariants were 
-1.31 and 1.95 rad, respectively, as computed from 
the values of the triplet phase invariants associated 
with the largest product of structure-factor magni- 
tudes for each given h, k, h + ~,. The average error of 
the estimates for 100 of the largest triple products 
was 0-71 rad. It is seen that this is about twice as 
great as the best average errors reported in Table 2 
and implies that the presence of different types of 
anomalous scatterers with considerably disparate 
values for 38 is associated with greater uncertainty 
in the estimates. 

Model calculations were also performed on exact 
data computed from the coordinates for cytochrome 
c550.PtC142- from Paracoccus denitrificans (Timkovich 
& Dickerson, 1976). Calculations had already been 
made of triplet phase invariants for this substance by 
use of probability theory (Hauptman, 1982) and, 
although the nature of the calculations performed 
here is rather different, some insight concerning the 
relative accuracies available from the two techniques 
can be obtained. The calculations were performed 
with data at 2.5 A, resolution and some at 5 .0A 
resolution and the results are shown in Table 3 for 
cases m = 1, 2, 3. 

' All reported average errors in Table 3 are based 
on the known average values of sets of eight invariants 

as occur in (20). For m = 2 ,  IF~h+F*K[ has been 
replaced by F~h + F~I and all IF l required for 
m = 2 and 3 were computed from (32) and (33). 

The values of the estimated angles in Table 3 for 
m = 3, 0.26 and -2.88, are very close to the values 
0-32 and -2.82, respectively, that would be obtained 
if the only anomalous scatterer present were the Pt 
atom. This demonstrates the predominance of the Pt 
atom as an anomalous scatterer. The values used were 
obtained from (24) in which the triplet phase 
invariants for the heavy atoms were set equal to zero 
and the ratios [Fj~hFj".kFjnff, 3,2 n n n +to/[nj f~.hf~.kfj.ff,+r,)] for 
the heavy atoms were assumed, in some average sense, 
to be equal, where nj is the number of atoms of type 
j present in the structure. This gave for (24) (except 
for a proportionality constant), 

q + l  
Z -3/2 <' )3 "J (f~s exp (i38xj). (34) 

j = 2  

The estimated angles for m =3 were obtained by 
evaluating the arctangent of the ratio of the imaginary 
part to the real part. The latter arctangent is the 
estimate associated with a positive value for the triple 
product of magnitude differences in (26) and the 
estimate plus zr is associated with a negative value 
for the triple product. In computing (34), the contribu- 
tions from the S and C1 atoms as anomalous scatterers 
were found to be negligible, and, as noted, the Fe 
atom had only a minor effect. 

Results of the calculations are shown in Table 3. 
For case m = l, it is seen that use of data with 5-0 
resolution causes only a slight increase in error for 
the 500 invariants having the largest triplet product 
of magnitude differences over that obtained for the 
500 invariants having the largest triple product of 
magnitude differences at 2.5/~ resolution. 

All the F~h and F*K used for Table 3 were computed 
with Cu Ka radiation. The values of the IF~, [ required 
for cases m = 2 and 3 were computed by use of (32). 
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Some [F~,[ were computed from (32) with data 
obtained from Cu K a  radiation and some with data 
obtained from Mo K a  radiation, as indicated in the 
footnotes to Table 3. Use of Mo K a  radiation for 
data collection should be feasible for many proteins. 
An example of a good diffraction photograph with 
Mo K a  radiation is the one published for crambin 
(Teeter & Hendrickson, 1979). 

The accuracy of the F~[ computed from (32) with 
data from Mo Ka  radiation is greater than that 
obtained with data from the longer Cu K a  radiation. 
This can be accounted for by the increasing magni- 
tude of the real correction for the atomic scattering 
factor for Pt as the wavelength becomes longer. It is 
evident from Table 3 that the accuracy of the calcula- 
tions of the values of the triplet invariants is enhanced 
significantly with use of Mo K a  radiation to obtain 
the ]F~, 1. In case m = 2, the average error is less than 
half that obtained when I F~,l is derived from data 
computed for Cu K a  radiation. For case m = 3, the 
use of shorter wavelengths than Cu K a  to obtain [F~, I 
for this example is virtually required because the 
errors are otherwise potentially quite large. 

A rather different type of evaluation is obtained in 
the sampling described here as compared to the 
results of the probability theory described by 
Hauptman (1982). Good accuracy is obtained here 
for regions other than in the vicinity of ±zr/2 only if 
[F~,[ is obtained from data at a smaller wavelength 
than Cu K a ,  e.g. Mo K a .  The  advent of synchrotron 
X-ray radiation facilities should facilitate greatly the 
collection of multiple-wavelength data. The estimates 
from the probability theory seem to cluster in the 
vicinity of about +1.2 and +2.6 rad (Hauptman, 
1982), maintaining about the same accuracy in each 
region, an average magnitude of error of about 0 .5-  
0.6 rad for many thousands of invariants. The average 
error of the better results in Table 3 is of the same 
magnitude, but the comparison is limited because the 
errors from the probability theory are based on the 
values of individual invariants and not on the average 
values of sets of eight, as occur in (20). As carried 
out, the calculations in the probability theory rep- 
resent the values of individual triplet phase invariants 
whereas the calculations here represent the values for 
the eight invariants that occur in (20). An individual 
value could have been assigned only to the triplet 
phase invariant in (20) associated with the largest 
triple product of structure-factor magnitudes, as was 
the case for many entries in Table 2. Although calcula- 
tions have shown that this may improve the accuracy 
somewhat, it would seem that in practice there would 
be no real advantage to proceeding in this way. 

Concluding remarks 

The opportunity to estimate the values of triplet phase 
invariants by probability methods, Ra,o.I, Rano,2 and 

Rano, 3 and generalizations of the rules for more than 
one type of predominant  anomalous scatterer gives 
rise to questions concerning possible applicability. 
Much depends upon the accuracy with which 
intensity data can be measured and its relationship 
to the formulas of interest, a matter for detailed study. 
It seems probable that the accuracy achieved in the 
case of macromolecules will usually not permit the 
application of a stepwise phase-determination pro- 
cedure as is used for small structures. It is possible 
that the tangent formula and a variety of least-squares 
methods that have been developed could be used in 
procedures for phase determination and refinement 
that make use of estimated values for the triplet phase 
invariants. Such procedures should also take into 
account the many established procedures for applying 
anomalous dispersion data and new ones, as yet 
untested, such as the exact algebraic analysis of multi- 
wavelength anomalous dispersion experiments 
(Karle, 1980). 

A particular feature of the results of this paper is 
that, for one type of predominant  anomalous scat- 
terer, it is only necessary to know the chemical identity 
of the anomalous scatterer. In fact, for cases 1 and 2 
of Table l, it is not even necessary to know the 
chemical identity of the anomalous scatterer if one 
is willing to consider the two alternative possibilities 
for cases 1 and 2 that would then arise, because the 
signs of f '  and f"  would not be known, and pursue 
them to a sensible conclusion. In the case of more 
than one type of predominant  anomalous scatterer, 
it is also necessary to have an estimate of the amount 
of each anomalous scatterer. Again, for cases 1 and 
2 of Table 1, this information is not required if the 
chemical identity is known for all anomalous scat- 
terers and the signs of all f '  are the same and the 
signs of all f "  are also the same. If they are not all 
the same, two alternative possibilities in the estimates 
of the triplet phase invariants in cases 1 and 2 would 
arise and those would have to be alternately pursued 
until an acceptable structure is obtained. 

I wish to thank Mr Stephen Brenner for making 
the computations reported here. 
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